On the random order extension property on groups

Andrei Alpeev

Euler Institute, St Petersburg State University

November 8, 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition X a set. An order \prec is a binary relation on X s.t.: 1. $x \prec y$ implies not $y \prec x$; 2. $x \prec y$ and $y \prec z$ implies $x \prec z$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Definition X a set. An order \prec is a binary relation on X s.t.: 1. $x \prec y$ implies not $y \prec x$; 2. $x \prec y$ and $y \prec z$ implies $x \prec z$.

pOrd(X) - the space of all partial orders on X,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition X a set. An order \prec is a binary relation on X s.t.: 1. $x \prec y$ implies not $y \prec x$; 2. $x \prec y$ and $y \prec z$ implies $x \prec z$.

pOrd(X) - the space of all partial orders on X, tOrd(X) - the space of all total orders on X.

Definition X a set. An order \prec is a binary relation on X s.t.: 1. $x \prec y$ implies not $y \prec x$; 2. $x \prec y$ and $y \prec z$ implies $x \prec z$. pOrd(X) - the space of all partial orders on X,

tOrd(X) - the space of all total orders on X.

Let G be a countable group. G acts on pOrd(G):

$$a(g \prec)b \Leftrightarrow ag \prec bg.$$

this is called R-action (but it is a left G-action), there is also an L-action

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Definition

A right-invariant order on G is a G-invariant point on pOrd(G).

Definition

A right-invariant order on G is a G-invariant point on pOrd(G).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Right-invarian orders \Leftrightarrow subsemigroups of without identity.

Definition

A right-invariant order on G is a G-invariant point on pOrd(G).

Right-invarian orders \Leftrightarrow subsemigroups of without identity.

Definition

An invariant random order (IRO) is a G-invariant measure on pOrd(G).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A right-invariant order on G is a G-invariant point on pOrd(G).

Right-invarian orders \Leftrightarrow subsemigroups of without identity.

Definition

An invariant random order (IRO) is a G-invariant measure on pOrd(G).

Definition

A group satisfies the invariant order extension property if every partial invariant order could be extended into a total invariant order.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A right-invariant order on G is a G-invariant point on pOrd(G).

Right-invarian orders \Leftrightarrow subsemigroups of without identity.

Definition

An invariant random order (IRO) is a G-invariant measure on pOrd(G).

Definition

A group satisfies the invariant order extension property if every partial invariant order could be extended into a total invariant order.

Theorem (Rhemtulla-Formanek, early 70's)

Torsion-free nilpotent groups have the invariant order extension property.

Definition

A right-invariant order on G is a G-invariant point on pOrd(G).

Right-invarian orders \Leftrightarrow subsemigroups of without identity.

Definition

An invariant random order (IRO) is a G-invariant measure on pOrd(G).

Definition

A group satisfies the invariant order extension property if every partial invariant order could be extended into a total invariant order.

Theorem (Rhemtulla-Formanek, early 70's)

Torsion-free nilpotent groups have the invariant order extension property.

No longer true even for metabelian!

Let be X a set. Denote $\operatorname{OrdExt}(X) \subset \operatorname{pOrd}(X) \times \operatorname{tOrd}(X)$ the set of all pairs (ω, ω') s.t. $\omega \in \operatorname{pOrd}(X)$, $\omega' \in \operatorname{tOrd}(X)$ and $\omega \subset \omega'(\omega')$ extends ω).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let be X a set. Denote $\operatorname{OrdExt}(X) \subset \operatorname{pOrd}(X) \times \operatorname{tOrd}(X)$ the set of all pairs (ω, ω') s.t. $\omega \in \operatorname{pOrd}(X)$, $\omega' \in \operatorname{tOrd}(X)$ and $\omega \subset \omega'(\omega')$ extends ω).

Definition

A group G has the IRO-extension property iff for every invariant ν on pOrd(G) there is an invariant γ on OrdExt(X) s.t. proj_{pOrd(G)}(γ) = ν .

Let be X a set. Denote $\operatorname{OrdExt}(X) \subset \operatorname{pOrd}(X) \times \operatorname{tOrd}(X)$ the set of all pairs (ω, ω') s.t. $\omega \in \operatorname{pOrd}(X)$, $\omega' \in \operatorname{tOrd}(X)$ and $\omega \subset \omega'(\omega')$ extends ω).

Definition

A group G has the IRO-extension property iff for every invariant ν on pOrd(G) there is an invariant γ on OrdExt(X) s.t. $\operatorname{proj}_{p\operatorname{Ord}(G)}(\gamma) = \nu$.

A general question: lifting invariant measures over topological extensions:

$$G \curvearrowright X$$
 \downarrow
 $G \curvearrowright Y$

Let be X a set. Denote $\operatorname{OrdExt}(X) \subset \operatorname{pOrd}(X) \times \operatorname{tOrd}(X)$ the set of all pairs (ω, ω') s.t. $\omega \in \operatorname{pOrd}(X)$, $\omega' \in \operatorname{tOrd}(X)$ and $\omega \subset \omega'(\omega')$ extends ω).

Definition

A group G has the IRO-extension property iff for every invariant ν on pOrd(G) there is an invariant γ on OrdExt(X) s.t. proj_{pOrd(G)}(γ) = ν .

A general question: lifting invariant measures over topological extensions:

$$G \curvearrowright X$$

 \downarrow
 $G \curvearrowright Y$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Possible for all extension pairs iff G is amenable.

Theorem (A. - Meyerovitch - Ryu 20', Stepin? 70's) *Amenable groups have the IRO extension property.*

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (A. - Meyerovitch - Ryu 20', Stepin? 70's) *Amenable groups have the IRO extension property.*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Glasner-Lin-Meyerovitch 22') SL₃(\mathbb{Z}) does NOT have the IRO extension property.

- Theorem (A. Meyerovitch Ryu 20', Stepin? 70's) *Amenable groups have the IRO extension property.*
- Theorem (Glasner-Lin-Meyerovitch 22')

 $SL_3(\mathbb{Z})$ does NOT have the IRO extension property.

Counterexample: semigroup of matrices with non-negative entries generates a partial invariant order, significantly reworked argument by Witte-Morris 94'.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Main result

Theorem

Nonamenable groups do not satisfy the IRO extension property.

Main result

Theorem

Nonamenable groups do not satisfy the IRO extension property. Thus, amenable \Leftrightarrow IRO extension property.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Main result

Theorem

Nonamenable groups do not satisfy the IRO extension property. Thus, amenable \Leftrightarrow IRO extension property.

Explicit set of counterexamples for the lifting problem:

$$G \curvearrowright X$$

 \downarrow
 $G \curvearrowright Y$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

if G' < G and G has the IRO extension property then so does G'.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

if G' < G and G has the IRO extension property then so does G'. Idea:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

if G' < G and G has the IRO extension property then so does G'. Idea:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ maybe *F*² has no IRO extension property?

if G' < G and G has the IRO extension property then so does G'. Idea:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- ▶ maybe *F*² has no IRO extension property?
- each non-amenable group contains F₂

if G' < G and G has the IRO extension property then so does G'. Idea:

- maybe F₂ has no IRO extension property?
- ▶ each non-amenable group contains F₂ [Olshanski, early 80's].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

 (X, μ) a standard probability space. E is a countable Borel equivalence relation:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- E is a Borel subset of $X \times X$;
- E is an equivalence relation;
- equivalence classes of E are at most countable.

Definition

 (X, μ) a standard probability space. E is a countable Borel equivalence relation:

- E is a Borel subset of $X \times X$;
- E is an equivalence relation;
- equivalence classes of E are at most countable.

Definition

A countable Borel equivalence relation E is measure-preserving if every partial Borel map ψ whose graph is a subset of E, is measure-preserving.

Definition

 (X, μ) a standard probability space. E is a countable Borel equivalence relation:

- E is a Borel subset of $X \times X$;
- E is an equivalence relation;
- equivalence classes of E are at most countable.

Definition

A countable Borel equivalence relation E is measure-preserving if every partial Borel map ψ whose graph is a subset of E, is measure-preserving.

Main example - orbit equivalence relations of measure-preserving actions of countable group on a standard probability space:

$$xEy$$
 iff $y = gx$ for some $g \in G$.

Definition

 (X, μ) a standard probability space. E is a countable Borel equivalence relation:

- E is a Borel subset of $X \times X$;
- E is an equivalence relation;
- equivalence classes of E are at most countable.

Definition

A countable Borel equivalence relation E is measure-preserving if every partial Borel map ψ whose graph is a subset of E, is measure-preserving.

Main example - orbit equivalence relations of measure-preserving actions of countable group on a standard probability space:

xEy iff
$$y = gx$$
 for some $g \in G$.

Equivalence relations are high-level analogs of groups.

Gaboriau-Lyons theorem

Theorem (Gaboriau-Lyons 09')

Let G be a non-amenable group. There is an essentially free pmp action of G with orbit equivalence relation E_2 and an essentially free pmp action of F_2 on the same standard probability space with orbit equivalence relation E_1 s.t. $E_1 \subset E_2$.

Gaboriau-Lyons theorem

Theorem (Gaboriau-Lyons 09')

Let G be a non-amenable group. There is an essentially free pmp action of G with orbit equivalence relation E_2 and an essentially free pmp action of F_2 on the same standard probability space with orbit equivalence relation E_1 s.t. $E_1 \subset E_2$.

Some applications:

 Dixmier problem for lamplighters over non-amenable groups [Monod-Ozawa 09'];

Gaboriau-Lyons theorem

Theorem (Gaboriau-Lyons 09')

Let G be a non-amenable group. There is an essentially free pmp action of G with orbit equivalence relation E_2 and an essentially free pmp action of F_2 on the same standard probability space with orbit equivalence relation E_1 s.t. $E_1 \subset E_2$.

Some applications:

- Dixmier problem for lamplighters over non-amenable groups [Monod-Ozawa 09'];
- Ulam non-stability for lamplighters over non-amenable groups [A.22'].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

M(X) - the space of all prob. measures on X.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

M(X) - the space of all prob. measures on X.

Definition

Let E be a measure preserving Borel equivalence relation on a standard probability space (X, μ) . An IRO on E is a map f s.t.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

M(X) - the space of all prob. measures on X.

Definition

Let E be a measure preserving Borel equivalence relation on a standard probability space (X, μ) . An IRO on E is a map f s.t.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

1.
$$f(x) \in M(pOrd([x]_E))$$
 for all $x \in X$;

2.
$$f(x) = f(y)$$
 for a.e. $x \in X$ and all yEx.

M(X) - the space of all prob. measures on X.

Definition

Let E be a measure preserving Borel equivalence relation on a standard probability space (X, μ) . An IRO on E is a map f s.t.

1.
$$f(x) \in M(pOrd([x]_E))$$
 for all $x \in X$;

2.
$$f(x) = f(y)$$
 for a.e. $x \in X$ and all yEx.

Definition

E has the IRO extension property if for every IRO f there is a map t s.t.

M(X) - the space of all prob. measures on X.

Definition

Let E be a measure preserving Borel equivalence relation on a standard probability space (X, μ) . An IRO on E is a map f s.t.

1.
$$f(x) \in M(pOrd([x]_E))$$
 for all $x \in X$;

2.
$$f(x) = f(y)$$
 for a.e. $x \in X$ and all yEx.

Definition

E has the IRO extension property if for every IRO f there is a map t s.t.

- 1. $t(x) \in M(\text{OrdExt}([x]_E));$
- 2. t(x) = t(y) for a.e. $x \in X$ and all yEx;
- 3. $\text{proj}_{\text{pOrd}([x]_{E})}(t(x)) = f(x)$ for a.e. $x \in X$.

Lemma

Let $E_1 \subset E_2$ be two equivalence relations. If E_2 has the IRO extension property then E_1 has the IRO extension property.

Proof.

Lemma

Let $E_1 \subset E_2$ be two equivalence relations. If E_2 has the IRO extension property then E_1 has the IRO extension property.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof. Let f be an IRO on E_1 .

Lemma

Let $E_1 \subset E_2$ be two equivalence relations. If E_2 has the IRO extension property then E_1 has the IRO extension property.

Proof.

Let f be an IRO on E_1 . There is an IRO f_2 on E_2 s.t. $f_2(x)|_{[x]_{E_1}} = f(x)$ for a.e. $x \in X$.

Lemma

Let $E_1 \subset E_2$ be two equivalence relations. If E_2 has the IRO extension property then E_1 has the IRO extension property.

Proof.

Let f be an IRO on E_1 . There is an IRO f_2 on E_2 s.t. $f_2(x)|_{[x]_{E_1}} = f(x)$ for a.e. $x \in X$. Apply the extension property for f_2 and get t_2 .

Lemma

Let $E_1 \subset E_2$ be two equivalence relations. If E_2 has the IRO extension property then E_1 has the IRO extension property.

Proof.

Let f be an IRO on E_1 . There is an IRO f_2 on E_2 s.t. $f_2(x)|_{[x]_{E_1}} = f(x)$ for a.e. $x \in X$. Apply the extension property for f_2 and get t_2 . Restrict $t_2(x)$ to $[x]_{E_1}$ for each x to get t for f.

Lemma

Let E be an orbit equivalence relation of an essentially free action $G \curvearrowright (X, \mu)$ of a countable group on a standard probability space.

Lemma

Let E be an orbit equivalence relation of an essentially free action $G \curvearrowright (X, \mu)$ of a countable group on a standard probability space. G has IRO extension property iff E does.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof.

Lemma

Let E be an orbit equivalence relation of an essentially free action $G \curvearrowright (X, \mu)$ of a countable group on a standard probability space. G has IRO extension property iff E does.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof.

IROs on *E* correspond to joinings of $G \curvearrowright (X, \mu)$ and $G \curvearrowright pOrd(G)$.

Lemma

Let E be an orbit equivalence relation of an essentially free action $G \curvearrowright (X, \mu)$ of a countable group on a standard probability space. G has IRO extension property iff E does.

Proof.

IROs on *E* correspond to joinings of $G \curvearrowright (X, \mu)$ and $G \curvearrowright pOrd(G)$.

IRO extension property for groups implies that for equiv.:

Let ν be a measure on pOrd(G).

Lemma

Let E be an orbit equivalence relation of an essentially free action $G \curvearrowright (X, \mu)$ of a countable group on a standard probability space. G has IRO extension property iff E does.

Proof.

IROs on *E* correspond to joinings of $G \curvearrowright (X, \mu)$ and $G \curvearrowright pOrd(G)$.

IRO extension property for groups implies that for equiv.:

Let ν be a measure on pOrd(G).

For each x, we identify G with $[x]_E$

Lemma

Let E be an orbit equivalence relation of an essentially free action $G \curvearrowright (X, \mu)$ of a countable group on a standard probability space. G has IRO extension property iff E does.

Proof.

IROs on *E* correspond to joinings of $G \curvearrowright (X, \mu)$ and $G \curvearrowright pOrd(G)$.

IRO extension property for groups implies that for equiv.:

Let ν be a measure on pOrd(G).

For each x, we identify G with $[x]_E$

(and so M(pOrd(G)) with $M(pOrd([x]_E))$). So we get an IRO f.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Apply the extension property for E to f.

Lemma

Let E be an orbit equivalence relation of an essentially free action $G \curvearrowright (X, \mu)$ of a countable group on a standard probability space. G has IRO extension property iff E does.

Proof.

IROs on *E* correspond to joinings of $G \curvearrowright (X, \mu)$ and $G \curvearrowright pOrd(G)$.

IRO extension property for groups implies that for equiv.:

Let ν be a measure on pOrd(G).

For each x, we identify G with $[x]_E$

(and so M(pOrd(G)) with $M(pOrd([x]_E))$). So we get an IRO f.

Apply the extension property for E to f.

get an invariant measure on $X \times pOrd(G) \times tOrd(G)$.

Proof. IRO extension property for G implies that for E.

Proof.

IRO extension property for G implies that for E. Idea:

▶ IRO on *E* gives a joining of $G \curvearrowright (X, \mu)$ with $G \curvearrowright pOrd(G)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Proof.

IRO extension property for G implies that for E. Idea:

▶ IRO on *E* gives a joining of $G \frown (X, \mu)$ with $G \frown pOrd(G)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

project to pOrd(G).

Proof.

IRO extension property for G implies that for E. Idea:

▶ IRO on *E* gives a joining of $G \curvearrowright (X, \mu)$ with $G \curvearrowright pOrd(G)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- project to pOrd(G).
- apply the extension property for G

Proof.

IRO extension property for G implies that for E. Idea:

- ▶ IRO on *E* gives a joining of $G \curvearrowright (X, \mu)$ with $G \curvearrowright pOrd(G)$.
- project to pOrd(G).
- apply the extension property for G
- relatively independent toining of G ∼ X × pOrd(G) and G ∼ pOrd(G) × tOrd(G) over the common factor pOrd(G).

Proof.

IRO extension property for G implies that for E. Idea:

- ▶ IRO on *E* gives a joining of $G \curvearrowright (X, \mu)$ with $G \curvearrowright pOrd(G)$.
- project to pOrd(G).
- apply the extension property for G
- relatively independent toining of G ∩ X × pOrd(G) and G ∩ pOrd(G) × tOrd(G) over the common factor pOrd(G).

decompose over X.

Counterexample for F_2

Why there is a counterexample for F_2 ?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Counterexample for F_2

Why there is a counterexample for F_2 ? $\pi: F_2 \to SL_3(\mathbb{Z})$, lift over projection.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

ふして 山田 ふぼやえばや 山下

For $a, b \in G$ denote:

$$sml^+_{\sqsubset}(a,b) = \{ \prec \in \mathsf{Ext}(\sqsubset) | \exists q > 0 \,\forall n > 0 \quad a^{-q}b^n \prec e \}$$

$$sml^-_{\sqsubset}(a,b) = \{ \prec \in \mathsf{Ext}(\sqsubset) | \exists q > 0 \,\forall n > 0 \quad e \prec b^{-n}a^q \}$$

For
$$a, b \in G$$
 denote:

$$\begin{aligned}
& \sup_{\Box}^{+}(a, b) = \{ \prec \in \operatorname{Ext}(\Box) | \exists q > 0 \,\forall n > 0 \quad a^{-q}b^{n} \prec e \} \\
& \sup_{\Box}^{-}(a, b) = \{ \prec \in \operatorname{Ext}(\Box) | \exists q > 0 \,\forall n > 0 \quad e \prec b^{-n}a^{q} \} \\
& a_{1} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad a_{2} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad a_{3} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
& a_{4} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad a_{5} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \quad a_{6} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.
\end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

ふして 山田 ふぼやえばや 山下

Denote
$$\operatorname{sml}_{\square}^{-} = \bigcap_{i=1}^{6} \operatorname{sml}_{\square}^{-}(a_{i}, a_{i-1})$$
 and $\operatorname{sml}_{\square}^{+} = \bigcap_{i=1}^{6} \operatorname{sml}_{\square}^{+}(a_{i}, a_{i+1}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Denote
$$\operatorname{sml}_{\square}^{-} = \bigcap_{i=1}^{6} \operatorname{sml}_{\square}^{-}(a_{i}, a_{i-1})$$
 and
 $\operatorname{sml}_{\square}^{+} = \bigcap_{i=1}^{6} \operatorname{sml}_{\square}^{+}(a_{i}, a_{i+1}).$
Lemma (GLM22)

$$\mathsf{Ext}(\sqsubset) = \mathsf{sml}^+_\sqsubset \cup \mathsf{sml}^-_\sqsubset$$
 .

Let *F* be a free group and let $\pi : F \to \Gamma$ be an epimorphism. A <u>transversal</u> is any map φ from Γ to *F* such that $\pi \circ \phi$ is the identity map on Γ . Fix any $\alpha_1, \ldots, \alpha_6 \in F$ such that $\pi(\alpha_i) = a_i$. Define $\varphi(a_i^n a_{i+1}^m) = \alpha_i^n \alpha_{i+1}^m$, for $i = 1, \ldots, 6 \mod 6$, and $n, m \in \mathbb{Z}$; we

define φ on remaining elements of Γ arbitrarily to get a transversal.

Thanks!